关于USB充电的详细解析



商悦传媒   2019-04-06 21:52

导读: 随着智能手机的兴起,功能逐步强大,配备的电池容量也逐步增大。原来USB的充电能力不能满足现有的充电功率...

  随着智能手机的兴起,功能逐步强大,配备的电池容量也逐步增大。原来USB的充电能力不能满足现有的充电功率和充电时间的需求。

  现在的智能手机以及其他USB设备,基本上都配备了快速充电技术。一般来说,对于USB充电功率超过10W(也就是5V 2A)才能称之为快速充电。

  一开始手机电池都不大,这个时候USB接口默认的5V 0.5A就可以满足充电的需要;但是当智能机出现之后,由于对性能的大幅度渴求导致功耗上升,0.5A已经满足不了需要了;于是定义了一个增强的USB充电识别标准: BC 1.2。它将充电电流最大扩展到5V 1.5A。

  但是到了2013年左右,出现了3000毫安时以上的智能手机,这个时候就算是5V 1.5A也不能满足需求了,于是再次扩展到5V 2A。

  手机充电电流是手机来控制的,而不是充电器。也就是说手机就是大坝,充电器只是水库,手机会智能检测充电器的负载能力,充电器功率大质量好,手机就会允许充电器加载更高的电流;充电器设计输出电流过小,那么手机也会限制给自己充电的电流。

  这就是为什么我们要选购大功率充电器的原因,例如一台手机最大支持5V 1.5A的输入,你买个5V 1A的充电器,就会导致手机只能以5V 1A来充电,不仅充电速度慢,而且因为充电器一直全负荷工作发热严重;反之你买个5V2A的充电头,手机会控制只输入1.5A的电流,充电器负载较低,有充足的余量。

  iPhone 6/Plus分别最高支持5V 1.5A/2A的充电,但是苹果标配充电器只有5V 1A。对于1800多毫安电池的iPhone6来说其实无关紧要,但是对于接近3000毫安时电池的iPhone6 Plus来说简直要了亲命!

  实际测试中,iPhone 6 Plus使用iPad充电器的峰值充电电流能到5V 1.9A,原因只有一个那就是节省成本。

  各种功率充电头给iPhoneX充电时间曲线A就是高通所谓的Quick Charge 1.0技术。当然实际上为了防止充电器满负荷,一般手机都是限制到了5V 1.8A左右的。安卓手机5V 2A的充电技术没有什么限制也没有识别协议。

  苹果不仅Lighting数据线有认证,充电器也是有认证的,苹果设备检测到非原装充电器会限制电流到5V1A甚至0.5A。这也是为什么盗版的苹果线充电慢的一个原因。

  之前充电器输出电压都是5V,大家想着怎么提高电流;但是当达到5V 2A之后,瓶颈就来了:电流再增加势必造成大批Micro USB接口和数据线无法承受。

  目前通用的Micro USB接口和我们的USB数据线A的电流下保证安全高效的传输,电流超过2A硬件就受不了。

  原来Type-A接口就是我们平常用的最多的标准USB接口!也的确,Type-A接口的英文名称就是“Standard Type-A USB”,这说明它是标准的USB接口,而形状的USB接口都是它的衍生物。

  什么也比不上一张图直观。我们经常使用的Mini-USB及Micro-USB都是根据USB2.0传输协议诞生,神奇的是,它们也都分别分为Type-A和Type-B。到了USB3.0时代,由于传输速度的提升带来了针脚位的提升,因此仅有Type-A USB3.0接口保持与以往形状一样,Type-B和Micro-USB都改变了外形(体积增大)。

  由于USB3.0接口的传输速度相较USB2.0有了大幅度的提高,因此它的针脚也发生了变化。这样一来,Micro-USB3.0接口不得不在外观上做出改变。Micro-USB3.0接口在高度上与Micro-USB2.0无异,但是长度明显增长了。同样的,A型和B型也在Micro-USB3.0上出现了笔者真的无法理解为什么USB协会每次都要在小型的USB接口上搞个A和B,这里就不多吐槽了。

  我们接触最多的Micro-USB3.0接口设备就要数高速移动硬盘了,其中绝大多数均为Type-B类型。

  标准Type-A USB接口由于体积较大,因此在发展到USB3.1的今天,它的外形也没有改变。但是Type-B USB接口就稍微有些尴尬了,因为论体积它并不比标准Type-A USB接口小多少,但是或许是设计之初并未考虑到今后的发展,导致了增加的针脚无处放置。因此Type-B USB3.0接口不得不改变了外观,较Type-B USB2.0增加了高度。很少有厂家选用这个接口形式。

  在行业内,USB3.0接口被做成蓝色以便和USB2.0接口的黑色相区分。目前,华硕已经推出了配备标准Type-A USB3.1接口的主板,其接口颜色为蓝绿色,与USB3.0相区分。尽管USB协会并未对USB3.1的颜色做出规定,但是以颜色来区分也将是必然。

  除苹果公司产品之外,先进市面上几乎所有的移动设备都采用了Micro-USB接口。而苹果自从iPhone 5开始也将之前的Dock口换为了体积更加小巧的Lightning接口,它与Micro-USB接口的大小相近。而现在,Type-C接口横空出世,未来一段时间内很可能会出现三足鼎立之势。

  上图为三款设备分别为采用Micro-USB接口的安卓手机、采用Lightning接口的iPhone 5S以及采用Type-C接口的诺基亚N1。

  其中,Micro-USB接口拥有防呆设计,只能单面插入。而Lightning接口及Type-C接口则均可以正反插,大大方便了用户平日的使用。不过在这里还是要说句题外话,那就是自从苹果采用Lightning接口后,算上购买手机附送的数据线条Lightning数据线,它们会在很快的时间坏掉,这可是Dock口时代笔者从未经历的事!或许Lightning接口的耐用度设计还有待完善。

  Type-C接口的尺寸为8.3mm×2.5mm,它的大小与Micro-USB及Lightning都较为相近,便携度毋庸置疑。

  USB3.1规格拥有10Gbps的传输速率,是USB3.0 5Gbps的两倍之多,达到了雷电接口一样的速度。拥有超高带宽的同时它还支持高达100W的强悍电力传输功能,另外,Type-C接口还可作为视频输出接口。

  目前HDMI 1.4规范的带宽为10.2Gbps,与USB3.1的10Gbps近乎于等速,加之新MacBook所采用的Type-C接口已经集成了DP、HDMI与D-Sub接口。多种功能的高集成度以及强力的性能,在未来我们完全可以有理由相信Type-C会成为取代诸多视频以及数据接口,成为统一众多接口的完美解决方案。

  另外,高冷的苹果总会与别人不一样,无论是之前的Dock口还是现在的Lightning口,都异于非苹果设备的Micro-USB接口。但是新MacBook采用了Type-C接口可以说给了大家以期盼:在未来苹果产品是否会统一采用Type-C呢?毕竟Type-C接口是通用标准,这样以后我们再也不用配备很多根数据线了。

  Type-C是性的出现,什么这么说?在前文当笔者放出那张USB接口全家福的时候,大家是否都会感觉太乱了呢?没错,主设备接口、从设备接口以及移动设备接口的形状全都不一样,而每类接口还又分为A/B等等我们不禁发出一声感叹:为什么就不能统一呢?Type-C的出现则解决了这一问题,不同于只在主设备使用的Type-A、只在从设备使用的Type-B以及只在移动设备使用的Mini&Micro-USB,它是一种既可以在主设备,又可以在从设备,还可以在移动设备使用的接口。

  USB接口规范的混乱并不是个例,有很多接口也存在着类似的问题。比如HDMI,我们常见的是标准HDMI(A)以及mini HDMI(B),但还有Micro(D)以及体积庞大的D型,似乎后两者的出现也显得没有必要。视频接口还有苹果的专用接口、DP、DVI等,也是一盘散沙。

  而对于真正实现了快速充电的,比如三星S6/EDGE来说,低电量时的峰值充电速度可以达到9V 1.5A左右,功率大约为14W,比5V 1.8A提高了约50%。这才是名副其实的快充。华为Mate8 MOTO X STYLE/联想P1/魅族PRO5,基本上都到了20W左右的充电功率。

  将六款手机的数据综合到同一个折线图进行对比,可见华为Mate 8的充电耗时最长、平均充电速率最低排名,以136分钟的总充电时长名列倒数第一,而微软Lumia 950 XL比华为Mate 8好些,104分钟的总充电时长排在六者的倒数第二。不过两者为这两款手机中电池容量最大的,华为Mate 8电池容量为4000mAh、Lumia 950 XL为3340mAh。

  手机充电时的电流并不是一直不变的,当你的手机处于低电量的时候,手机会要求充电器全速工作补电,这就是所谓的峰值。在这个时候充电器和手机的降压电路火力全开,充电速度非常快,但是损耗和发热也很大。

  一般冲到60%~80%的时候,根据各个厂家设定的不同,手机会给充电器发送信号降低电流,以达到保护电池、降低损耗、减少发热等目的;在后面这个阶段,充电的功率是大幅度降低的,也就是我们常说的涓流补电。

  于是大家得到了启发,纷纷开始做自己的私有识别协议。比如MTK的那个PUMP EXPRESS PLUS啊,华为在荣耀7上自己搞的识别协议啊。但是这些基本原理是一样的,那就是从5V开始充电,然后充电器和手机互相识别,在电流最高2A的情况下提高充电器到手机USB端口的电压。

  但是华为和使用了MTK PE的魅族就不行了,必须搭配自家的专用充电器;比较搞笑的是他们家的充电器反而支持QuickCharge2.0,可以给三星或者小米的手机实现9V快充。这是因为充电器的QC认证高通管的不是很严,想做就做了,只要你不宣传、不打Quick Charge 2.0的LOGO就没事。

  增大电压,功率是上去了,效率却下降了。电压每提高一档,效率约下降10%,这些能量大部分转化为热量,所以20V电压档几乎就没人用了,只保留了5V、9V、12V三个档。即便如此还是热的不行,高通也觉得5V到9V步子迈的太大,有点扯到蛋,于是可以以0.2V为单位不断调节直到找到最合适的电压,多大的电压最合适?高通有自己独特的电压智能协商(INOV)算法,这就是QC3.0。

  QC3.0:在QC2.0 9V/12V两档电压基础上,进一步细分电压档,采用独特的INOV算法,以200mV为一档设定电压,最低可下探至3.6V最高电压20V,并且向下兼容QC2.0。由于全面使用了Type-c接口取代原来的MicroUSB接口,最大电流也提升到了3A,因为电压更低所以效率提升最高达38%,充电速度提升27%,发热降低45%。

  USB Power Delivery快速充电规范(通过VBUS直流电平上耦合FSK信号来请求充电器调整输出电压和电流的过程),不同于高通Quick Charger 2.0规范,因为高通QC2.0是利用D+和D-上的不同的直流电压来请求充电器动态调整输出电压和电流实现快速充电的过程。

  USB PD的通信是将协议层的消息调制成24MHZ的FSK信号并耦合到VBUS上或者从VBUS上获得FSK信号来实现手机和充电器通信的过程。

  如图所示,在USB PD通信中,是将24MHz的FSK通过cAC-Coupling耦合电容耦合到VBUS上的直流电平上的,而为了使24MHz的FSK不对Power Supply或者USB Host的VBUS直流电压产生影响,在回路中同时添加了zIsolation电感组成的低通滤波器过滤掉FSK信号。

  1) USBOTG的PHY监控VBUS电压,如果有VBUS的5V电压存在并且检测到OTG ID脚是1K下拉电阻(不是OTG Host模式,OTG Host模式的ID电阻是小于1K的),就说明该电缆是支持USB PD的;

  2)USBOTG做正常BCS V1.2规范的充电器探测并且启动USB PD 设备策略管理器,策略管理器监控VBUS的直流电平上是否耦合了FSK信号,并且解码消息得出是CapabilitiesSource 消息,就根据USB PD规范解析该消息得出USB PD充电器所支持的所有电压和电流列表对;

  与QC的区别:首先从名字上就看一窥端倪,PD是Power Delivery,关注的是两个或者多个设备,甚至是一个基于USB接口的智能电网的电能传输过程,电能传输可以是双方向的,甚至是组网的,可以具备系统级供电策略。而QC是Quick Charge仅仅关注的是快速充电问题,电能传输是单方向的,不具备电能组网能力,不支持除了供电以外的其他功能。

  综上分析我们可以看出,USBPD不仅为消费类电子带来了形式多样接口应用,还承载着未来消费类电子以及部分家用电器的供电管理智能化的使命,将能够比较好的解决目前供电方式混乱,各种适配器及连接线严重浪费社会资源,污染自然环境的情况。

  快充的另一条技术路线:OPPO的VOOC闪充。前面提到高电压充电技术是因为电流超过2A硬件就受不了;于是OPPO想了个简单粗暴的办法:从头到尾改造硬件!

  VOOC闪充我们可以简单的看作充电器直连电池,使用特制加强的充电器、数据线、电池,去除Micro USB端口带来的限制;同时电池进行多模块分组同时充电(不确定是不是并联)。这样一来,不用担心硬件吃不消;在大家充电功率还在10W左右徘徊的时候,OPPO一口气直接拉到快要25W.FIND 7创造的充电记录,到现在都罕有匹敌。

  想状态下,只要正负极材料的化学结构基本不发生变化,电池充放电的可逆性很好,锂离子电池就能保证长时间循环。

  上图中横坐标为时间,纵坐标为锂电池电压。由于锂电池的特殊性,过压或者欠压都会导致电池报废,所以现在的锂电池充放电保护电路原理就是测量锂电池电压,再根据电压判断锂电池是否处于正常状态(非过压、非欠压)。

  锂电池的充电电流如上图粉红色线所示。锂电池的充电分为三个阶段,分别是恒流预充电、大电流恒流充电与恒压充电。

  然后与问题有关的就来了。当锂电池电压高于3.0V时,就进入到第二阶段,大电流恒流充电阶段(C C Fast charge)。由于锂电池经过第一阶段的预充,其状态已经比较稳定了(预充阶段的作用可以这样理解~但并不严谨)。所以在第二阶段,充电电流就可以适当提高,根据不同的电池来说,这个电流的大小可以从0.1C到几C不等,其中C是指电池容量,如2600mAh的锂电池,0.1C就是指260mA大小的电流。

  在这一个充电阶段中,国家建议的标准充电是用0.1C电流进行充电的,这个就是标准充电。不过标准充电这个标准由于提出的时间很早,十几年前的就提出来。那时候因为锂电池技术远远不如现在稳定(不允许大电流充电),所以才会有这样一个标准~~~采用标准充电的唯一好处就是充电过程稳定,发生爆炸之类的几率非常小;缺点就是费时间!

  而快速充电,就是指在这个阶段用大于0.1C的电流进行充电。如果锂电池容量为2600mAh,那么标准充电的电流为260mA,只要充电电流大于260mA,就可以定义为快速充电了。不过就从目前的锂电池水平与充放电管理芯片的水平来说,用1C的电流充电都没问题。所以快速充电也没有想象中的那么危险。一般快速充电的充电电流为0.2~0.8C,所以快速充电还是安全的。由于近几年来的提升,现在的充电器基本上都是快充类型的。

  电瓶车的电瓶一般有铅酸蓄电池和锂电池两种。这些电瓶都是由若干的电池成组而成的(铅酸蓄电池类型的由6个或者8个串并联组成;锂电池类型的则由若干个锂电池串并联组成)。而涉及到电池组的充电方式,这里又有另外的一个大问题了,就是电池均衡问题。关于电池均衡问题,我在这里不再详说,百度一下就可以了。我只能说目前的绝大多数电瓶车电池都没有电池均衡管理,所以这个导致了电池组的寿命远远不如单个电池的寿命,这也解释了为什么电瓶车的电池不耐用,一年左右就报废了~~~同时也解释了当前电动汽车发展的困境就是电池成组技术的限制。